Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1934105

ABSTRACT

Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.


Subject(s)
Antifungal Agents/administration & dosage , Epithelium/drug effects , Organometallic Compounds/administration & dosage , Pyridines/administration & dosage , Skin/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/chemistry , Dermatitis, Seborrheic/diagnosis , Dermatitis, Seborrheic/drug therapy , Dermatitis, Seborrheic/etiology , Dysbiosis , Epidermis/drug effects , Epithelium/microbiology , Humans , Microbial Sensitivity Tests , Optical Imaging/methods , Organometallic Compounds/chemistry , Pyridines/chemistry , Skin/microbiology , Skin Absorption , Spectrum Analysis
2.
Lancet Psychiatry ; 9(3): 199-210, 2022 03.
Article in English | MEDLINE | ID: covidwho-1747370

ABSTRACT

BACKGROUND: There are no approved pharmacological therapies to support treatment of the core communication and socialisation difficulties associated with autism spectrum disorder in adults. We aimed to assess the efficacy, safety, and pharmacokinetics of balovaptan, a vasopressin 1a receptor antagonist, versus placebo in autistic adults. METHODS: V1aduct was a phase 3, randomised, placebo-controlled, double-blind trial, conducted at 46 sites across six countries (the USA, the UK, France, Italy, Spain, and Canada). Eligible participants were aged 18 years or older with an intelligence quotient (IQ) of 70 or higher, and met the criteria for moderate-to-severe autism spectrum disorder (DSM-5 and Autism Diagnostic Observation Schedule). Participants were randomly allocated (1:1), with an independent interactive voice or web-based response system, to receive balovaptan (10 mg) or placebo daily for 24 weeks. Randomisation was stratified by an individual's baseline Vineland-II two-domain composite (2DC) score (<60 or ≥60), sex, region (North America or rest of world), and age (<25 years or ≥25 years). Participants, study site personnel, and the sponsor were masked to treatment assignment. The primary endpoint was change from baseline in Vineland-II 2DC score (the mean composite score across the Vineland-II socialisation and communication domains) at week 24. The primary analysis was done with ANCOVA in the intention-to-treat population. The V1aduct study was terminated for futility after around 50% of participants completed the week 24 visit. This trial is registered with ClinicalTrials.gov (NCT03504917). FINDINGS: Between Aug 8, 2018, and July 1, 2020, 540 people were screened for eligibility, of whom 322 were allocated to receive balovaptan (164 [51%]) or placebo (158 [49%]). One participant from the balovaptan group was not treated before trial termination and was excluded from the analysis. 60 participants in the balovaptan group and 55 in the placebo group discontinued treatment before week 24. The sample consisted of 64 (20%) women and 257 (80%) men, with 260 (81%) participants from North America and 61 (19%) from Europe. At baseline, mean age was 27·6 years (SD 9·7) and mean IQ score was 104·8 (18·1). Two (1%) participants were American Indian or Alaska Native, eight (2%) were Asian, 15 (5%) were Black or African American, 283 (88%) were White, four (1%) were of multiple races, and nine (3%) were of unknown race. Mean baseline Vineland-II 2DC scores were 67·2 (SD 15·3) in the balovaptan group and 66·2 (17·7) in the placebo group. The interim futility analysis showed no improvement for balovaptan versus placebo in terms of Vineland-II 2DC score at week 24 compared with baseline, with a least-squares mean change of 2·91 (SE 1·52) in the balovaptan group (n=79) and 4·75 (1·60) in the placebo group (n=71; estimated treatment difference -1·84 [95% CI -5·15 to 1·48]). In the final analysis, mean change from baseline in Vineland-II 2DC score at week 24 was 4·56 (SD 10·85) in the balovaptan group (n=111) and 6·83 (12·18) in the placebo group (n=99). Balovaptan was well tolerated, with similar proportions of participants with at least one adverse event in the balovaptan group (98 [60%] of 163) and placebo group (104 [66%] of 158). The most common adverse events were nasopharyngitis (14 [9%] in the balovaptan group and 19 [12%] in the placebo group), diarrhoea (11 [7%] and 14 [9%]), upper respiratory tract infection (ten [6%] and nine [6%]), insomnia (five [3%] and eight [5%]), oropharyngeal pain (five [3%] and eight [5%]), and dizziness (two [1%] and ten [6%]). Serious adverse events were reported for two (1%) participants in the balovaptan group (one each of suicidal ideation and schizoaffective disorder), and five (3%) participants in the placebo group (one each of suicidal ideation, panic disorder, limb abscess, urosepsis, colitis [in the same participant with urosepsis], and death by suicide). No treatment-related deaths occurred. INTERPRETATION: Balovaptan did not improve social communication in autistic adults. This study provides insights into challenges facing autism spectrum disorder trials, including the considerable placebo response and the selection of appropriate outcome measures. FUNDING: F Hoffmann-La Roche.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/administration & dosage , Autism Spectrum Disorder/drug therapy , Benzodiazepines/administration & dosage , Communication Disorders/drug therapy , Pyridines/administration & dosage , Triazoles/administration & dosage , Adult , Antidiuretic Hormone Receptor Antagonists/adverse effects , Autism Spectrum Disorder/complications , Benzodiazepines/adverse effects , Communication Disorders/etiology , Double-Blind Method , Female , Humans , Male , Pyridines/adverse effects , Treatment Outcome , Triazoles/adverse effects
3.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1433361

ABSTRACT

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Subject(s)
Blood Coagulation Disorders/drug therapy , COVID-19 , Dry Powder Inhalers , Pyridines/administration & dosage , Thiazoles/administration & dosage , Administration, Inhalation , Aerosols , Blood Coagulation Disorders/virology , COVID-19/complications , Humans , Particle Size , Powders
4.
Eur Rev Med Pharmacol Sci ; 25(16): 5310-5317, 2021 08.
Article in English | MEDLINE | ID: covidwho-1395678

ABSTRACT

OBJECTIVE: The outbreak of coronavirus disease 2019 (COVID-19) has affected the treatment of cancer patients, with particular regard to the management of both chemotherapy and side effects. Chemotherapy-induced nausea and vomiting (CINV) are amongst the most troublesome side effects that impair patients' adherence to treatments and their quality of life (QoL). NEPA (Akynzeo®), is an oral fixed-dose combination of netupitant [a neurokinin-1 receptor antagonist (NK1RA), 300 mg] and palonosetron [(5-hydroxytryptamine (serotonin or 5HT) type3 receptor antagonist (5HT3RA), 0.5 mg] which has been shown to be effective in preventing CINV. PATIENTS AND METHODS: This prospective study started before the outbreak of COVID-19 and was carried out during the pandemic period. The aim was to evaluate the efficacy and safety of a single oral dose NEPA plus 12 mg of dexamethasone (DEX) in patients treated with Folfoxiri plus Bevacizumab and Folfirinox. The patients were diagnosed with advanced colorectal cancer (CRC) or advanced pancreatic ductal adenocarcinoma (PDAC). They were divided into two groups: naïve patients and patients previously treated with serotonin receptor antagonists (5HT3-RA) and neurokin-1 receptor antagonists (NK1-RA). RESULTS: During the overall phase, the complete response (CR) rate was 96.8% in naïve patients treated with Folfoxiri plus Bevacizumab, and 94.6% in patients treated with Folfirinox. During the acute and delayed phases, the CR rate was 92.8% and 94.2%, with Folfoxiri and Bevacizumab, as well as 96.2% and 94.6%, with Folfirinox. There was no adequate control of CINV events in patients on antiemetic prophylaxis with 5HT3-RA or NK1-RA associated with cortisone. During the overall phase, the CR rate was 74.6% with Folfoxiri plus Bevacizumab and 75.8% with Folfirinox. During the acute and delayed phases, the CR rate was 72.5% and 74.8% with Folfoxiri plus Bevacizumab, as well as 75.2% and 74.6% with Folfirinox. CONCLUSIONS: This study has shown the therapeutic benefits of NEPA in the management and prophylaxis of CINV events, both in naive patients and patients previously treated with 5HT3-RA and NK1-RA. In addition, NEPA has been shown to be safe, both before and during the COVID-19 pandemic.


Subject(s)
Antiemetics/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/therapeutic use , Colorectal Neoplasms/drug therapy , Palonosetron/therapeutic use , Pyridines/therapeutic use , Aged , Antiemetics/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Bevacizumab/administration & dosage , COVID-19 , Female , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Humans , Irinotecan/administration & dosage , Irinotecan/therapeutic use , Leucovorin/administration & dosage , Leucovorin/therapeutic use , Male , Middle Aged , Nausea/prevention & control , Oxaliplatin/administration & dosage , Oxaliplatin/therapeutic use , Palonosetron/administration & dosage , Pandemics , Prospective Studies , Pyridines/administration & dosage , Vomiting/prevention & control
5.
N Engl J Med ; 385(8): 695-706, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1364626

ABSTRACT

BACKGROUND: Atogepant is an oral, small-molecule, calcitonin gene-related peptide receptor antagonist that is being investigated for the preventive treatment of migraine. METHODS: In a phase 3, double-blind trial, we randomly assigned adults with 4 to 14 migraine days per month in a 1:1:1:1 ratio to receive a once-daily dose of oral atogepant (10 mg, 30 mg, or 60 mg) or placebo for 12 weeks. The primary end point was the change from baseline in the mean number of migraine days per month across the 12 weeks. Secondary end points included headache days per month, a reduction from baseline of at least 50% in the 3-month average of migraine days per month, quality of life, and scores on the Activity Impairment in Migraine-Diary (AIM-D). RESULTS: A total of 2270 participants were screened, 910 were enrolled, and 873 were included in the efficacy analysis; 214 were assigned to the 10-mg atogepant group, 223 to the 30-mg atogepant group, 222 to the 60-mg atogepant group, and 214 to the placebo group. The mean number of migraine days per month at baseline ranged from 7.5 to 7.9 in the four groups. The changes from baseline across 12 weeks were -3.7 days with 10-mg atogepant, -3.9 days with 30-mg atogepant, -4.2 days with 60-mg atogepant, and -2.5 days with placebo. The mean differences from placebo in the change from baseline were -1.2 days with 10-mg atogepant (95% confidence interval [CI], -1.8 to -0.6), -1.4 days with 30-mg atogepant (95% CI, -1.9 to -0.8), and -1.7 days with 60-mg atogepant (95% CI, -2.3 to -1.2) (P<0.001 for all comparisons with placebo). Results for the secondary end points favored atogepant over placebo with the exceptions of the AIM-D Performance of Daily Activities score and the AIM-D Physical Impairment score for the 10-mg dose. The most common adverse events were constipation (6.9 to 7.7% across atogepant doses) and nausea (4.4 to 6.1% across atogepant doses). Serious adverse events included one case each of asthma and optic neuritis in the 10-mg atogepant group. CONCLUSIONS: Oral atogepant once daily was effective in reducing the number of migraine days and headache days over a period of 12 weeks. Adverse events included constipation and nausea. Longer and larger trials are needed to determine the effect and safety of atogepant for migraine prevention. (Funded by Allergan; ADVANCE ClinicalTrials.gov number, NCT03777059.).


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Migraine Disorders/prevention & control , Piperidines/administration & dosage , Pyridines/administration & dosage , Pyrroles/administration & dosage , Spiro Compounds/administration & dosage , Adolescent , Adult , Aged , Calcitonin Gene-Related Peptide Receptor Antagonists/adverse effects , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Constipation/chemically induced , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Intention to Treat Analysis , Male , Middle Aged , Nausea/chemically induced , Piperidines/adverse effects , Piperidines/therapeutic use , Pyridines/adverse effects , Pyridines/therapeutic use , Pyrroles/adverse effects , Pyrroles/therapeutic use , Spiro Compounds/adverse effects , Spiro Compounds/therapeutic use , Young Adult
6.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 561-567, 2021 03.
Article in English | MEDLINE | ID: covidwho-1235720

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been characterized by lymphopenia as well as a proinflammatory cytokine storm, which are responsible for the poor prognosis and multiorgan defects. The transcription factor nuclear factor-κB (NF-κB) modulates the functions of the immune cells and alters the gene expression profile of different cytokines in response to various pathogenic stimuli, while many proinflammatory factors have been known to induce NF-κB signalling cascade. Besides, NF-κB has been known to potentiate the production of reactive oxygen species (ROS) leading to apoptosis in various tissues in many diseases and viral infections. Though the reports on the involvement of the NF-κB signalling pathway in COVID-19 are limited, the therapeutic benefits of NF-κB inhibitors including dexamethasone, a synthetic form of glucocorticoid, have increasingly been realized. Considering the fact, the abnormal activation of the NF-κB resulting from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection might be associated with the pathogenic profile of immune cells, cytokine storm and multiorgan defects. Thus, the pharmacological inactivation of the NF-κB signalling pathway can strongly represent a potential therapeutic target to treat the symptomatology of COVID-19. This article signifies pharmacological blockade of the phosphorylation of inhibitor of nuclear factor kappa B kinase subunit beta (IKKß), a key downstream effector of NF-κB signalling, for a therapeutic consideration to attenuate COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Delivery Systems/trends , I-kappa B Kinase/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Signal Transduction/physiology , Animals , COVID-19/epidemiology , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/metabolism , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , I-kappa B Kinase/metabolism , Lymphopenia/drug therapy , Lymphopenia/epidemiology , Lymphopenia/metabolism , NF-kappa B/metabolism , Nitriles/administration & dosage , Pyridines/administration & dosage , Signal Transduction/drug effects , Sulfones/administration & dosage
7.
Br J Pharmacol ; 177(21): 4971-4974, 2020 11.
Article in English | MEDLINE | ID: covidwho-998832

ABSTRACT

In the search to rapidly identify effective therapies that will mitigate the morbidity and mortality of COVID-19, attention has been directed towards the repurposing of existing drugs. Candidates for repurposing include drugs that target COVID-19 pathobiology, including agents that alter angiotensin signalling. Recent data indicate that key findings in COVID-19 patients include thrombosis and endotheliitis. Activation of proteinase-activated receptor 1 (PAR1), in particular by the serine protease thrombin, is a critical element in platelet aggregation and coagulation. PAR1 activation also impacts on the actions of other cell types involved in COVID-19 pathobiology, including endothelial cells, fibroblasts and pulmonary alveolar epithelial cells. Vorapaxar is an approved inhibitor of PAR1, used for treatment of patients with myocardial infarction or peripheral arterial disease. We discuss evidence for a possible beneficial role for vorapaxar in the treatment of COVID-19 patients and other as-yet non-approved antagonists of PAR1 and proteinase-activated receptor 4 (PAR4). LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Subject(s)
Coronavirus Infections/drug therapy , Lactones/administration & dosage , Pneumonia, Viral/drug therapy , Pyridines/administration & dosage , Receptor, PAR-1/antagonists & inhibitors , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Drug Repositioning , Humans , Lactones/pharmacology , Pandemics , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/pharmacology , Pneumonia, Viral/virology , Pyridines/pharmacology , Receptor, PAR-1/metabolism , Receptors, Thrombin/antagonists & inhibitors , Receptors, Thrombin/metabolism , SARS-CoV-2 , COVID-19 Drug Treatment
8.
J Thromb Haemost ; 18(6): 1320-1323, 2020 06.
Article in English | MEDLINE | ID: covidwho-116313

ABSTRACT

BACKGROUND: Antiviral drugs are administered in patients with severe COVID-19 respiratory syndrome, including those treated with direct oral anticoagulants (DOACs). Concomitant administration of antiviral agents has the potential to increase their plasma concentration. A series of patients managed in the Cremona Thrombosis Center were admitted at Cremona Hospital for SARS-CoV-2 and started antiviral drugs without stopping DOAC therapy. DOAC plasma levels were measured in hospital and results compared with those recorded before hospitalization. METHODS: All consecutive patients on DOACs were candidates for administration of antiviral agents (lopinavir, ritonavir, or darunavir). Plasma samples for DOAC measurement were collected 2to 4 days after starting antiviral treatment, at 12 hours from the last dose intake in patients on dabigatran and apixaban, and at 24 hours in those on rivaroxaban and edoxaban. For each patient, C-trough DOAC level, expressed as ng/mL, was compared with the one measured before hospitalization. RESULTS: Of the 1039 patients hospitalized between February 22 and March 15, 2020 with COVID-19 pneumonia and candidates for antiviral therapy, 32 were on treatment with a DOAC. DOAC was stopped in 20 and continued in the remaining 12. On average, C-trough levels were 6.14 times higher during hospitalization than in the pre-hospitalization period. CONCLUSION: DOAC patients treated with antiviral drugs show an alarming increase in DOAC plasma levels. In order to prevent bleeding complications, we believe that physicians should consider withholding DOACs from patients with SARS-CoV-2 and replacing them with alternative parenteral antithrombotic strategies for as long as antiviral agents are deemed necessary and until discharge.


Subject(s)
Antithrombins/blood , Antiviral Agents/adverse effects , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Dabigatran/blood , Factor Xa Inhibitors/blood , Pneumonia, Viral/drug therapy , Pyrazoles/blood , Pyridines/blood , Pyridones/blood , Thiazoles/blood , Administration, Oral , Aged , Aged, 80 and over , Antithrombins/administration & dosage , Antithrombins/adverse effects , Antiviral Agents/administration & dosage , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Dabigatran/administration & dosage , Dabigatran/adverse effects , Darunavir/adverse effects , Drug Interactions , Drug Monitoring , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Female , Hemorrhage/chemically induced , Humans , Italy , Lopinavir/adverse effects , Male , Pandemics , Patient Safety , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyridines/administration & dosage , Pyridines/adverse effects , Pyridones/administration & dosage , Pyridones/adverse effects , Risk Assessment , Risk Factors , Ritonavir/adverse effects , SARS-CoV-2 , Severity of Illness Index , Thiazoles/administration & dosage , Thiazoles/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL